You are here

Lead optimization of aryl and aralkyl amine-based triazolopyrimidine inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with antimalarial activity in mice.

TitleLead optimization of aryl and aralkyl amine-based triazolopyrimidine inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with antimalarial activity in mice.
Publication TypeJournal Article
Year of Publication2011
AuthorsGujjar, R, El Mazouni, F, White, KL, White, J, Creason, S, Shackleford, DM, Deng, X, Charman, WN, Bathurst, I, Burrows, J, Floyd, DM, Matthews, D, Buckner, FS, Charman, SA, Phillips, MA, Rathod, PK
JournalJ Med Chem
Volume54
Issue11
Pagination3935-49
Date Published2011 Jun 9
ISSN1520-4804
KeywordsAnimals, Antimalarials, Disease Models, Animal, Drug Design, Drug Discovery, Enzyme Inhibitors, Humans, Malaria, Mice, Microsomes, Liver, Molecular Structure, Oxidoreductases Acting on CH-CH Group Donors, Plasmodium berghei, Plasmodium falciparum, Protein Binding, Pyrimidines, Solubility, Structure-Activity Relationship, Triazoles
Abstract

Malaria is one of the leading causes of severe infectious disease worldwide; yet, our ability to maintain effective therapy to combat the illness is continually challenged by the emergence of drug resistance. We previously reported identification of a new class of triazolopyrimidine-based Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors with antimalarial activity, leading to the discovery of a new lead series and novel target for drug development. Active compounds from the series contained a triazolopyrimidine ring attached to an aromatic group through a bridging nitrogen atom. Herein, we describe systematic efforts to optimize the aromatic functionality with the goal of improving potency and in vivo properties of compounds from the series. These studies led to the identification of two new substituted aniline moieties (4-SF(5)-Ph and 3,5-Di-F-4-CF(3)-Ph), which, when coupled to the triazolopyrimidine ring, showed good plasma exposure and better efficacy in the Plasmodium berghei mouse model of the disease than previously reported compounds from the series.

DOI10.1021/jm200265b
Alternate JournalJ. Med. Chem.
PubMed ID21517059