You are here

The NsrR regulon in nitrosative stress resistance of Salmonella enterica serovar Typhimurium.

TitleThe NsrR regulon in nitrosative stress resistance of Salmonella enterica serovar Typhimurium.
Publication TypeJournal Article
Year of Publication2012
AuthorsKarlinsey, JE, Bang, I-S, Becker, LA, Frawley, ER, Porwollik, S, Robbins, HF, Thomas, VChittezham, Urbano, R, McClelland, M, Fang, FC
JournalMol Microbiol
Volume85
Issue6
Pagination1179-93
Date Published2012 Sep
ISSN1365-2958
KeywordsAnimals, Drug Resistance, Bacterial, Mice, Microarray Analysis, Nitric Oxide, Real-Time Polymerase Chain Reaction, Regulon, Repressor Proteins, Salmonella typhimurium, Stress, Physiological, Transcriptome, Virulence Factors
Abstract

Nitric oxide (NO·) is an important mediator of innate immunity. The facultative intracellular pathogen Salmonella has evolved mechanisms to detoxify and evade the antimicrobial actions of host-derived NO· produced during infection. Expression of the NO·-detoxifying flavohaemoglobin Hmp is controlled by the NO·-sensing transcriptional repressor NsrR and is required for Salmonella virulence. In this study we show that NsrR responds to very low NO· concentrations, suggesting that it plays a primary role in the nitrosative stress response. Additionally, we have defined the NsrR regulon in Salmonella enterica sv. Typhimurium 14028s using transcriptional microarray, qRT-PCR and in silico methods. A novel NsrR-regulated gene designated STM1808 has been identified, along with hmp, hcp-hcr, yeaR-yoaG, ygbA and ytfE. STM1808 and ygbA are important for S. Typhimurium growth during nitrosative stress, and the hcp-hcr locus plays a supportive role in NO· detoxification. ICP-MS analysis of purified STM1808 suggests that it is a zinc metalloprotein, with histidine residues H32 and H82 required for NO· resistance and zinc binding. Moreover, STM1808 and ytfE promote Salmonella growth during systemic infection of mice. Collectively, these findings demonstrate that NsrR-regulated genes in addition to hmp are important for NO· detoxification, nitrosative stress resistance and Salmonella virulence.

DOI10.1111/j.1365-2958.2012.08167.x
Alternate JournalMol. Microbiol.
PubMed ID22831173
PubMed Central IDPMC3438343
Grant ListAI39557 / AI / NIAID NIH HHS / United States
AI77629 / AI / NIAID NIH HHS / United States
R01 AI039557 / AI / NIAID NIH HHS / United States
R01 AI077629 / AI / NIAID NIH HHS / United States